Tag Archives: Batteries

Intercalation Hosts for Multivalent-Ion Batteries

Wiley Small Structures [LINK]

Among intercalation, alloying, and conversion battery chemistries, the intercalation chemistry is most widely used in commercial applications due to its superior reversibility, round trip efficiency, and stability, albeit at the expense of reduced specific capacity. While intercalation hosts for monovalent ions (e.g., lithium and sodium) are well developed, the jury is still out on the best available intercalation host materials for multivalent ions such as magnesium, zinc, calcium, and aluminum. In multivalent systems, it is challenging to find electrode materials that can act as a durable host, and accommodate large number of ions, while also permitting fast diffusion kinetics. In this perspective, the electrochemical performance of five distinct class of materials (prussian blue analogues, sodium super ionic conductors organic, layered, and open-tunnel oxides) for multivalent ion storage is evaluated. The analysis reveals that open-tunnel oxides show noticeably superior performance in multivalent ion batteries. Herein, the underlying reasons for this are discussed and the case is made for an in-depth machine-learning-driven “materials exploration effort” directed toward discovery of new open-tunneled oxides that could lead to vastly superior multivalent ion batteries.

NSF Grant to study Oxide Anodes for High-Performance Aqueous Batteries

We received an NSF grant from CBET Electrochemical System program. Collaborative Research: Fundamental Study of Niobium Tungsten Oxide Anodes for High-Performance Aqueous Batteries

Modern human society requires efficient, affordable and safe means for energy storage. Today, rechargeable lithium–ion batteries dominate the energy storage landscape from portable electronics to the rapidly expanding electric vehicles and electricity (grid) storage applications. However, current lithium-ion batteries suffer from safety and cost issues, primarily because of flammable, moisture-sensitive and expensive organic solvents used in the electrolytes. This project is aimed at replacing the organic solvent electrolyte with water, in a manner that does not compromise on battery performance (i.e., volumetric and gravimetric energy and power density). To accomplish this, the research team proposes to explore new classes of complex oxide (niobium tungsten oxide) materials that will be designed specifically for aqueous battery chemistries, enabling breakthrough improvements in volumetric energy and power density for the next generation of aqueous batteries. This work will contribute to low-cost, high-performance and safe aqueous batteries that are critical for large-scale energy storage. Click Here for more details.